Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 23: 1522-1533, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38633385

RESUMEN

The complex relationships between gastrointestinal (GI) nematodes and the host gut microbiota have been implicated in key aspects of helminth disease and infection outcomes. Nevertheless, the direct and indirect mechanisms governing these interactions are, thus far, largely unknown. In this proof-of-concept study, we demonstrate that the excretory-secretory products (ESPs) and extracellular vesicles (EVs) of key GI nematodes contain peptides that, when recombinantly expressed, exert antimicrobial activity in vitro against Bacillus subtilis. In particular, using time-lapse microfluidics microscopy, we demonstrate that exposure of B. subtilis to a recombinant saposin-domain containing peptide from the 'brown stomach worm', Teladorsagia circumcincta, and a metridin-like ShK toxin from the 'barber's pole worm', Haemonchus contortus, results in cell lysis and significantly reduced growth rates. Data from this study support the hypothesis that GI nematodes may modulate the composition of the vertebrate gut microbiota directly via the secretion of antimicrobial peptides, and pave the way for future investigations aimed at deciphering the impact of such changes on the pathophysiology of GI helminth infection and disease.

2.
Protein Sci ; 33(3): e4901, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358130

RESUMEN

Broadly-neutralizing monoclonal antibodies are becoming increasingly important tools for treating infectious diseases and animal envenomings. However, designing and developing broadly-neutralizing antibodies can be cumbersome using traditional low-throughput iterative protein engineering methods. Here, we present a new high-throughput approach for the standardized discovery of broadly-neutralizing monoclonal antibodies relying on phage display technology and consensus antigens representing average sequences of related proteins. We showcase the utility of this approach by applying it to toxic sphingomyelinases from the venoms of species from very distant orders of the animal kingdom, the recluse spider and Gadim scorpion. First, we designed a consensus sphingomyelinase and performed three rounds of phage display selection, followed by DELFIA-based screening and ranking, and benchmarked this to a similar campaign involving cross-panning against recombinant versions of the native toxins. Second, we identified two scFvs that not only bind the consensus toxins, but which can also neutralize sphingomyelinase activity of native whole venom in vitro. Finally, we conclude that the phage display campaign involving the use of the consensus toxin was more successful in yielding cross-neutralizing scFvs than the phage display campaign involving cross-panning.


Asunto(s)
Esfingomielina Fosfodiesterasa , Venenos de Araña , Animales , Araña Reclusa Parda , Escorpiones , Anticuerpos ampliamente neutralizantes , Consenso , Anticuerpos Monoclonales
3.
Toxicon ; 239: 107613, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38218383

RESUMEN

Three-finger toxins (3FTxs) have traditionally been obtained via venom fractionation of whole venoms from snakes. This method often yields functional toxins, but it can be difficult to obtain pure isoforms, as it is challenging to separate the many different toxins with similar physicochemical properties that generally exist in many venoms. This issue can be circumvented via the use of recombinant expression. However, achieving the correct disulfide bond formation in recombinant toxins is challenging and requires extensive optimization of expression and purification methods to enhance stability and functionality. In this study, we investigated the expression of α-cobratoxin, a well-characterized 3FTx from the monocled cobra (Naja kaouthia), in three different expression systems, namely Escherichia coli BL21 (DE3) cells with the csCyDisCo plasmid, Escherichia coli SHuffle cells, and Komagataella phaffii (formerly known as Pichia pastoris). While none of the tested systems yielded α-cobratoxin identical to the variant isolated from whole venom, the His6-tagged α-cobratoxin expressed in K. phaffii exhibited a comparable secondary structure according to circular dichroism spectra and similar binding properties to the α7 subunit of the nicotinic acetylcholine receptor. The findings presented here illustrate the advantages and limitations of the different expression systems and can help guide researchers who wish to express 3FTxs.


Asunto(s)
Proteínas Neurotóxicas de Elápidos , Receptores Nicotínicos , Toxinas Biológicas , Escherichia coli/genética , Escherichia coli/metabolismo , Toxinas de los Tres Dedos , Proteínas Neurotóxicas de Elápidos/química , Proteínas Neurotóxicas de Elápidos/metabolismo , Receptores Nicotínicos/metabolismo , Ponzoñas , Venenos Elapídicos/química
4.
Toxicon ; 234: 107307, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37783315

RESUMEN

Despite the considerable global impact of snakebite envenoming, available treatments remain suboptimal. Here, we report the discovery of a broadly-neutralizing human monoclonal antibody, using a phage display-based cross-panning strategy, capable of reducing the cytotoxic effects of venom phospholipase A2s from three different snake genera from different continents. This highlights the potential of utilizing monoclonal antibodies to develop more effective, safer, and globally accessible polyvalent antivenoms that can be widely used to treat snakebite envenoming.


Asunto(s)
Mordeduras de Serpientes , Animales , Humanos , Ponzoñas , Anticuerpos Monoclonales , Antivenenos/farmacología , Serpientes , Fosfolipasas A2 , Venenos de Serpiente
5.
Protein Sci ; 32(12): e4821, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897425

RESUMEN

Recycling IgG antibodies bind to their target antigen at physiological pH in the blood stream and release them upon endocytosis when pH levels drop, allowing the IgG antibodies to be recycled into circulation via FcRn-mediated cellular pathways, while the antigens undergo lysosomal degradation. This enables recycling antibodies to achieve comparable therapeutic effect at lower doses than their non-recycling counterparts. The development of such antibodies is typically achieved by histidine doping of their variable regions or by performing in vitro antibody selection campaigns utilizing histidine doped libraries. Both are strategies that may introduce sequence liabilities. Here, we present a methodology that employs a naïve antibody phage display library, consisting of natural variable domains, to discover antibodies that bind α-cobratoxin from the venom of Naja kaouthia in a pH-dependent manner. As a result, an antibody was discovered that exhibits a 7-fold higher off-rate at pH 5.5 than pH 7.4 in bio-layer interferometry experiments. Interestingly, no histidine residues were found in its variable domains, and in addition, the antibody showed pH-dependent binding to a histidine-devoid antigen mutant. As such, the results demonstrate that pH-dependent antigen-antibody binding may not always be driven by histidine residues. By employing molecular dynamics simulations, different protonation states of titratable residues were found, which potentially could be responsible for the observed pH-dependent antigen binding properties of the antibody. Finally, given the typically high diversity of naïve antibody libraries, the methodology presented here can likely be applied to discover recycling antibodies against different targets ab initio without the need for histidine doping.


Asunto(s)
Bacteriófagos , Histidina , Histidina/metabolismo , Antígenos/metabolismo , Inmunoglobulina G/genética , Concentración de Iones de Hidrógeno , Bacteriófagos/metabolismo , Biblioteca de Péptidos
6.
Bioconjug Chem ; 33(8): 1494-1504, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35875886

RESUMEN

Recombinantly produced biotherapeutics hold promise for improving the current standard of care for snakebite envenoming over conventional serotherapy. Nanobodies have performed well in the clinic, and in the context of antivenom, they have shown the ability to neutralize long α-neurotoxins in vivo. Here, we showcase a protein engineering approach to increase the valence and hydrodynamic size of neutralizing nanobodies raised against a long α-neurotoxin (α-cobratoxin) from the venom of the monocled cobraNaja kaouthia. Based on the p53 tetramerization domain, a panel of anti-α-cobratoxin nanobody-p53 fusion proteins, termed Quads, were produced with different valences, inclusion or exclusion of Fc regions for endosomal recycling purposes, hydrodynamic sizes, and spatial arrangements, comprising up to 16 binding sites. Measurements of binding affinity and stoichiometry showed that the nanobody binding affinity was retained when incorporated into the Quad scaffold, and all nanobody domains were accessible for toxin binding, subsequently displaying increased blocking potency in vitro compared to the monomeric format. Moreover, functional assessment using automated patch-clamp assays demonstrated that the nanobody and Quads displayed neutralizing effects against long α-neurotoxins from both N. kaouthia and the forest cobra N. melanoleuca. This engineering approach offers a means of altering the valence, endosomal recyclability, and hydrodynamic size of existing nanobody-based therapeutics in a simple plug-and-play fashion and can thus serve as a technology for researchers tailoring therapeutic properties for improved neutralization of soluble targets such as snake toxins.


Asunto(s)
Elapidae , Anticuerpos de Dominio Único , Animales , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Elapidae/metabolismo , Neurotoxinas/química , Neurotoxinas/metabolismo , Anticuerpos de Dominio Único/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
7.
Gigascience ; 112022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365832

RESUMEN

Snake venoms represent a danger to human health, but also a gold mine of bioactive proteins that can be harnessed for drug discovery purposes. The evolution of snakes and their venom has been studied for decades, particularly via traditional morphological and basic genetic methods alongside venom proteomics. However, while the field of genomics has matured rapidly over the past 2 decades, owing to the development of next-generation sequencing technologies, snake genomics remains in its infancy. Here, we provide an overview of the state of the art in snake genomics and discuss its potential implications for studying venom evolution and toxinology. On the basis of current knowledge, gene duplication and positive selection are key mechanisms in the neofunctionalization of snake venom proteins. This makes snake venoms important evolutionary drivers that explain the remarkable venom diversification and adaptive variation observed in these reptiles. Gene duplication and neofunctionalization have also generated a large number of repeat sequences in snake genomes that pose a significant challenge to DNA sequencing, resulting in the need for substantial computational resources and longer sequencing read length for high-quality genome assembly. Fortunately, owing to constantly improving sequencing technologies and computational tools, we are now able to explore the molecular mechanisms of snake venom evolution in unprecedented detail. Such novel insights have the potential to affect the design and development of antivenoms and possibly other drugs, as well as provide new fundamental knowledge on snake biology and evolution.


Asunto(s)
Genómica , Venenos de Serpiente , Animales , Genoma , Reptiles/genética , Venenos de Serpiente/genética , Serpientes/genética
8.
Biochim Biophys Acta Proteins Proteom ; 1869(10): 140696, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246789

RESUMEN

Actinoporins constitute a family of α pore-forming toxins produced by sea anemones. The soluble fold of these proteins consists of a ß-sandwich flanked by two α-helices. Actinoporins exert their activity by specifically recognizing sphingomyelin at their target membranes. Once there, they penetrate the membrane with their N-terminal α-helices, a process that leads to the formation of cation-selective pores. These pores kill the target cells by provoking an osmotic shock on them. In this review, we examine the role and relevance of the structural features of actinoporins, down to the residue level. We look at the specific amino acids that play significant roles in the function of actinoporins and their fold. Particular emphasis is given to those residues that display a high degree of conservation across the actinoporin sequences known to date. In light of the latest findings in the field, the membrane requirements for pore formation, the effect of lipid composition, and the process of pore formation are also discussed.


Asunto(s)
Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Anémonas de Mar/metabolismo , Secuencias de Aminoácidos , Animales , Membrana Celular/metabolismo , Modelos Moleculares , Estructura Secundaria de Proteína , Anémonas de Mar/química , Esfingomielinas/metabolismo
9.
Methods Enzymol ; 649: 307-339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33712191

RESUMEN

Protein-lipid interactions are crucial events from a biochemical point of view, like the interaction of proteins with the cell plasma membrane, and their study is of great importance. Actinoporins are a very powerful tool to study this kind of interactions, since they are soluble proteins in an aqueous environment, capable of inserting into membranes when they have the adequate composition. In fact, actinoporins have been used to study protein-lipid interactions for many years now. Sometimes it is not possible to use real biological membranes in the experiments, so model membranes need to be used. This article aims to give a thorough description of many of the techniques used to study actinoporin-lipid interactions, using both biological and model membranes: Hemolysis, release of vesicles content, surface plasmon resonance, isothermal titration calorimetry, fluorescence-based measurements, etc. Some of these techniques measure the actinoporins activity and some measure their binding properties. The combination of all the techniques described can offer valuable information about the thermodynamics and the kinetics of the actinoporin-lipid interaction.


Asunto(s)
Venenos de Cnidarios , Anémonas de Mar , Animales , Calorimetría , Membrana Celular , Lípidos , Termodinámica
10.
Biochemistry ; 60(4): 314-323, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33445865

RESUMEN

Sticholysins are pore-forming toxins produced by sea anemones that are members of the actinoporin family. They exert their activity by forming pores on membranes, provided they have sphingomyelin. To assemble into pores, specific recognition, binding, and oligomerization are required. While recognition and binding have been extensively studied, delving into the oligomerization process and the stoichiometry of the pores has been more difficult. Here, we present evidence that these toxins are capable of oligomerizing in solution and suggesting that the interaction of sticholysin II (StnII) with its isoform sticholysin I (StnI) is stronger than that of StnI with itself. We also show that the stoichiometry of the final, thermodynamically stable StnI pores is, at least, heptameric. Furthermore, our results indicate that this association maintains its oligomerization number when StnII is included, indicating that the stoichiometry of StnII is also of that order, and not tetrameric, as previously thought. These results are compatible with the stoichiometry observed for the crystallized pore of FraC, another very similar actinoporin produced by a different sea anemone species. Our results also indicate that the stoichiometry of actinoporin pores in equilibrium is conserved regardless of the particular composition of a given pore ensemble, which we have shown for mixed sticholysin pores.


Asunto(s)
Venenos de Cnidarios/química , Transferencia Resonante de Energía de Fluorescencia , Multimerización de Proteína , Anémonas de Mar/química , Animales , Compuestos Orgánicos/química
11.
Front Bioeng Biotechnol ; 9: 811905, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127675

RESUMEN

Animal venoms are complex mixtures containing peptides and proteins known as toxins, which are responsible for the deleterious effect of envenomations. Across the animal Kingdom, toxin diversity is enormous, and the ability to understand the biochemical mechanisms governing toxicity is not only relevant for the development of better envenomation therapies, but also for exploiting toxin bioactivities for therapeutic or biotechnological purposes. Most of toxinology research has relied on obtaining the toxins from crude venoms; however, some toxins are difficult to obtain because the venomous animal is endangered, does not thrive in captivity, produces only a small amount of venom, is difficult to milk, or only produces low amounts of the toxin of interest. Heterologous expression of toxins enables the production of sufficient amounts to unlock the biotechnological potential of these bioactive proteins. Moreover, heterologous expression ensures homogeneity, avoids cross-contamination with other venom components, and circumvents the use of crude venom. Heterologous expression is also not only restricted to natural toxins, but allows for the design of toxins with special properties or can take advantage of the increasing amount of transcriptomics and genomics data, enabling the expression of dormant toxin genes. The main challenge when producing toxins is obtaining properly folded proteins with a correct disulfide pattern that ensures the activity of the toxin of interest. This review presents the strategies that can be used to express toxins in bacteria, yeast, insect cells, or mammalian cells, as well as synthetic approaches that do not involve cells, such as cell-free biosynthesis and peptide synthesis. This is accompanied by an overview of the main advantages and drawbacks of these different systems for producing toxins, as well as a discussion of the biosafety considerations that need to be made when working with highly bioactive proteins.

12.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255441

RESUMEN

Venoms constitute complex mixtures of many different molecules arising from evolution in processes driven by continuous prey-predator interactions. One of the most common compounds in these venomous cocktails are pore-forming proteins, a family of toxins whose activity relies on the disruption of the plasmatic membranes by forming pores. The venom of sea anemones, belonging to the oldest lineage of venomous animals, contains a large amount of a characteristic group of pore-forming proteins known as actinoporins. They bind specifically to sphingomyelin-containing membranes and suffer a conformational metamorphosis that drives them to make pores. This event usually leads cells to death by osmotic shock. Sticholysins are the actinoporins produced by Stichodactyla helianthus. Three different isotoxins are known: Sticholysins I, II, and III. They share very similar amino acid sequence and three-dimensional structure but display different behavior in terms of lytic activity and ability to interact with cholesterol, an important lipid component of vertebrate membranes. In addition, sticholysins can act in synergy when exerting their toxin action. The subtle, but important, molecular nuances that explain their different behavior are described and discussed throughout the text. Improving our knowledge about sticholysins behavior is important for eventually developing them into biotechnological tools.


Asunto(s)
Venenos de Cnidarios/química , Anémonas de Mar/química , Secuencia de Aminoácidos/genética , Animales , Membrana Celular/genética , Membrana Celular/ultraestructura , Venenos de Cnidarios/genética , Compuestos Orgánicos/química , Conformación Proteica , Anémonas de Mar/genética , Anémonas de Mar/ultraestructura
13.
Arch Biochem Biophys ; 689: 108435, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32485153

RESUMEN

Actinoporins are a family of pore-forming toxins produced by sea anemones as part of their venomous cocktail. These proteins remain soluble and stably folded in aqueous solution, but when interacting with sphingomyelin-containing lipid membranes, they become integral oligomeric membrane structures that form a pore permeable to cations, which leads to cell death by osmotic shock. Actinoporins appear as multigenic families within the genome of sea anemones: several genes encoding very similar actinoporins are detected within the same species. The Caribbean Sea anemone Stichodactyla helianthus produces three actinoporins (sticholysins I, II and III; StnI, StnII and StnIII) that differ in their toxic potency. For example, StnII is about four-fold more effective than StnI against sheep erythrocytes in causing hemolysis, and both show synergy. However, StnIII, recently discovered in the S. helianthus transcriptome, has not been characterized so far. Here we describe StnIII's spectroscopic and functional properties and show its potential to interact with the other Stns. StnIII seems to maintain the well-preserved fold of all actinoporins, characterized by a high content of ß-sheet, but it is significantly less thermostable. Its functional characterization shows that the critical concentration needed to form active pores is higher than for either StnI or StnII, suggesting differences in behavior when oligomerizing on membrane surfaces. Our results show that StnIII is an interesting and unexpected piece in the puzzle of how this Caribbean Sea anemone species modulates its venomous activity.


Asunto(s)
Venenos de Cnidarios/química , Proteínas Citotóxicas Formadoras de Poros/química , Anémonas de Mar/química , Secuencia de Aminoácidos , Animales , Venenos de Cnidarios/metabolismo , Hemólisis/efectos de los fármacos , Modelos Moleculares , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Anémonas de Mar/metabolismo , Alineación de Secuencia , Ovinos
14.
Biochim Biophys Acta Biomembr ; 1862(9): 183311, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32353378

RESUMEN

Release of aqueous contents from model lipid vesicles has been a standard procedure to evaluate pore formation efficiency by actinoporins, such as sticholysin II (StnII), for the last few decades. However, regardless of the probe of choice, the results reported that StnII action was never able to empty the vesicles completely. This was hard to explain if StnII pores were to be stable and always leaky for the probes used. To address this question, we have used a variety of probes, including rhodamine 6G or Tb3+, to test the permeability of StnII's pores. Our results indicate that calcein was in fact too large to fit through StnII's pores, and that the standard method in the field is actually reporting StnII-induced transient permeation of the membrane rather than the passage of solutes through the stable assembled pores. In order to evaluate the permeability of these structures, we used a dithionite-based assay, which showed that the final pores were in fact open. Thus, our results indicate that the stable actinoporins' pores are open in spite of plateaued classic release curves. Besides the proper pore, the first stages of pore formation would inflict serious damage to living cells as well.


Asunto(s)
Venenos de Cnidarios/química , Membrana Dobles de Lípidos/química , Lípidos/química , Esfingomielinas/química , Animales , Venenos de Cnidarios/metabolismo , Membranas/efectos de los fármacos , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Rodaminas/química , Anémonas de Mar/química
15.
Toxins (Basel) ; 11(6)2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242582

RESUMEN

Animal venoms are complex mixtures of highly specialized toxic molecules. Cnidarians and arachnids produce pore-forming proteins (PFPs) directed against the plasma membrane of their target cells. Among PFPs from cnidarians, actinoporins stand out for their small size and molecular simplicity. While native actinoporins require only sphingomyelin for membrane binding, engineered chimeras containing a recognition antibody-derived domain fused to an actinoporin isoform can nonetheless serve as highly specific immunotoxins. Examples of such constructs targeted against malignant cells have been already reported. However, PFPs from arachnid venoms are less well-studied from a structural and functional point of view. Spiders from the Latrodectus genus are professional insect hunters that, as part of their toxic arsenal, produce large PFPs known as latrotoxins. Interestingly, some latrotoxins have been identified as potent and highly-specific insecticides. Given the proteinaceous nature of these toxins, their promising future use as efficient bioinsecticides is discussed throughout this Perspective. Protein engineering and large-scale recombinant production are critical steps for the use of these PFPs as tools to control agriculturally important insect pests. In summary, both families of PFPs, from Cnidaria and Arachnida, appear to be molecules with promising biotechnological applications.


Asunto(s)
Venenos de Cnidarios , Proteínas Citotóxicas Formadoras de Poros , Venenos de Araña , Animales , Arácnidos , Biotecnología , Cnidarios , Venenos de Cnidarios/química , Venenos de Cnidarios/toxicidad , Genómica , Humanos , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/toxicidad , Venenos de Araña/química , Venenos de Araña/toxicidad
16.
Biophys J ; 116(12): 2253-2265, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31146924

RESUMEN

Actinoporins are a group of soluble toxic proteins that bind to membranes containing sphingomyelin (SM) and oligomerize to form pores. Sticholysin II (StnII) is a member of the actinoporin family produced by Stichodactyla helianthus. Cholesterol (Chol) is known to enhance the activity of StnII. However, the molecular mechanisms behind this activation have remained obscure, although the activation is not Chol specific but rather sterol specific. To further explore how bilayer lipids affect or are affected by StnII, we have used a multiprobe approach (fluorescent analogs of both Chol and SM) in combination with a series of StnII tryptophan (Trp) mutants to study StnII/bilayer interactions. First, we compared StnII bilayer permeabilization in the presence of Chol or oleoyl-ceramide (OCer). The comparison was done because both Chol and OCer have a 1-hydroxyl, which helps to orient the molecule in the bilayer (although OCer has additional polar functional groups). Both Chol and OCer also have increased affinity for SM, which StnII may recognize. However, our results show that only Chol was able to activate StnII-induced bilayer permeabilization; OCer failed to activate it. To further examine possible Chol/StnII interactions, we measured Förster resonance energy transfer between Trp in StnII and cholestatrienol, a fluorescent analog of Chol. We could show higher Förster resonance energy transfer efficiency between cholestatrienol and Trps in position 100 and 114 of StnII when compared to three other Trp positions further away from the bilayer binding region of StnII. Taken together, our results suggest that StnII was able to attract Chol to its vicinity, maybe by showing affinity for Chol. SM interactions are known to be important for StnII binding to bilayers, and Chol is known to facilitate subsequent permeabilization of the bilayers by StnII. Our results help to better understand the role of these important membrane lipids for the bilayer properties of StnII.


Asunto(s)
Colesterol/metabolismo , Venenos de Cnidarios/metabolismo , Esfingomielinas/metabolismo , Venenos de Cnidarios/química , Venenos de Cnidarios/genética , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación Molecular , Mutación
17.
Toxicon ; 150: 105-114, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29787779

RESUMEN

Transcriptomic profiling of venom producing tissues from different animals is an effective approach for discovering new toxins useful in biotechnological and pharmaceutical applications, as well in evolutionary comparative studies of venomous animals. Stichodactyla helianthus is a Caribbean sea anemone which produces actinoporins as part of its toxic venom. This family of pore forming toxins is multigenic and at least two different isoforms, encoded by separate genes, are produced by S. helianthus. These isoforms, sticholysins I and II, share 93% amino acid identity but differ in their pore forming activity and act synergistically. This observation suggests that other actinoporin isoforms, if present in the venomous mixture, could offer an advantageous strategy to modulate whole venom activity. Using high-throughput sequencing we generated a de novo transcriptome of S. helianthus and determined the relative expression of assembled transcripts using RNA-Seq to better characterize components of this species' venom, focusing on actinoporin diversity. Applying this approach, we have discovered at least one new actinoporin variant from S. helianthus in addition to several other putative venom components.


Asunto(s)
Venenos de Cnidarios/química , Anémonas de Mar/fisiología , Transcriptoma , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Venenos de Cnidarios/fisiología , Regulación de la Expresión Génica , Isoformas de Proteínas , Proteínas/química , Proteínas/metabolismo
18.
Arch Biochem Biophys ; 636: 79-89, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29138096

RESUMEN

Sticholysins I and II (StnI and StnII), α-pore forming toxins from the sea anemone Stichodactyla helianthus, are water-soluble toxic proteins which upon interaction with lipid membranes of specific composition bind to the bilayer, extend and insert their N-terminal α-helix, and become oligomeric integral membrane structures. The result is a pore that leads to cell death by osmotic shock. StnI and StnII show 93% of sequence identity, but also different membrane pore-forming activities. The hydrophobicity profile along the first 18 residues revealed differences which were canceled by substituting StnI amino acids 2 and 9. Accordingly, the StnID9A mutant, and the corresponding StnIE2AD9A variant, showed enhanced hemolytic activity. They also revealed a key role for an exposed salt bridge between Asp9 and Lys68. This interaction is not possible in StnII but appears conserved in the other two well-characterized actinoporins, equinatoxin II and fragaceatoxin C. The StnII mutant A8D showed that this single replacement was enough to transform StnII into a version with impaired pore-forming activity. Overall, the results show the key importance of this salt bridge linking the N-terminal stretch to the ß-sandwich core. A conclusion of general application for the understanding of salt bridges role in protein design, folding and stability.


Asunto(s)
Venenos de Cnidarios/química , Mutación Missense , Pliegue de Proteína , Anémonas de Mar/química , Sustitución de Aminoácidos , Animales , Venenos de Cnidarios/genética , Venenos de Cnidarios/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Estructura Secundaria de Proteína , Anémonas de Mar/genética , Anémonas de Mar/metabolismo
19.
Langmuir ; 33(41): 11018-11027, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28933861

RESUMEN

In this study, we examined the influence of bilayer thickness on the activity of the actinoporin toxins sticholysin I and II (StnI and StnII) at 25 °C. Bilayer thickness was varied using dimonounsaturated phosphatidylcholine (PC) analogues (with 14:1, 16:1, 18:1, 20:1, and 22:1 acyl chains). In addition, N-14:0-sphingomyelin (SM) was always included because StnI and StnII are SM specific. Cholesterol was also incorporated as indicated. In cholesterol-free large unilamellar vesicles (LUVs) the PC:SM molar ratio was 4:1, and when cholesterol was included, the complete molar ratio was 4:1:0.5 (PC:SM:cholesterol, respectively). Stn toxins promote bilayer leakage through pores formed by oligomerized toxin monomers. Initial calcein leakage was moderately dependent on bilayer PC acyl chain length (and thus bilayer thickness), with higher rates observed with di-16:1 and di-18:1 PC bilayers. In the presence of cholesterol, the maximum rates of calcein leakage were observed in di-14:1 and di-16:1 PC bilayers. Using isothermal titration calorimetry to study the Stn-LUV interaction, we observed that the bilayer affinity constant (Ka) peaked with LUVs containing di-18:1 PC, and was lower in shorter and longer PC acyl chain bilayers. The presence of cholesterol increased the binding affinity approximately 30-fold at the optimal bilayer thickness (di-18:1-PC). We conclude that bilayer thickness affects both functional and conformational aspects of Stn membrane binding and pore formation. Moreover, the length of the actinoporins' N-terminal α-helix, which penetrates the membrane to form a functional pore, appears to be optimal for the membrane thickness represented by di-18:1 PC.


Asunto(s)
Compuestos Orgánicos/química , Colesterol , Lecitinas , Membrana Dobles de Lípidos , Fosfatidilcolinas , Esfingomielinas , Liposomas Unilamelares
20.
Biochemistry ; 55(46): 6406-6420, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27933775

RESUMEN

Actinoporins are pore-forming toxins from sea anemones. Upon interaction with sphingomyelin-containing bilayers, they become integral oligomeric membrane structures that form a pore. Sticholysin II from Stichodactyla helianthus contains five tryptophans located at strategic positions; its role has now been studied using different mutants. Results show that W43 and W115 play a determinant role in maintaining the high thermostability of the protein, while W146 provides specific interactions for protomer-protomer assembly. W110 and W114 sustain the hydrophobic effect, which is one of the major driving forces for membrane binding in the presence of Chol. However, in its absence, additional interactions with sphingomyelin are required. These conclusions were confirmed with two sphingomyelin analogues, one of which had impaired hydrogen bonding properties. The results obtained support actinoporins' Trp residues playing a major role in membrane recognition and binding, but their residues have an only minor influence on the diffusion and oligomerization steps needed to assemble a functional pore.


Asunto(s)
Membrana Celular/metabolismo , Venenos de Cnidarios/metabolismo , Citotoxinas/metabolismo , Anémonas de Mar/metabolismo , Triptófano/metabolismo , Animales , Membrana Celular/química , Dicroismo Circular , Venenos de Cnidarios/química , Venenos de Cnidarios/genética , Citotoxinas/química , Citotoxinas/genética , Electroforesis en Gel de Poliacrilamida , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Estructura Secundaria de Proteína , Anémonas de Mar/genética , Esfingomielinas/química , Esfingomielinas/metabolismo , Temperatura , Triptófano/química , Triptófano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...